
CEDAR Template Model V1.6.0
Martin J O'Connor, Marcos Martínez-Romero,

and the CEDAR Team
August 10th, 2020

Table of Contents

Introduction
Template Model
Template Model Concrete Representation

Representing Artifact Provenance
Representing Artifact Structure Using JSON Schema

Representing Template Fields
Representing Template Fields with Multiple Values
Representing Template Elements
Representing Templates
Representing Multiple Instances of Template Elements and Template Fields

Representing Artifact Semantics using JSON-LD
Representing Instances as RDF

Expressing Field Value Constraints
The _valueConstraints field

General Value Constraint Fields
Numeric Value Constraint Fields
Temporal Value Constraint Fields
The ontologies Value Constraint Field
The classes Value Constraint Field
The branches Value Constraint Field
The valueSets Value Constraint Field
The literals Value Constraint Field
The defaultValue Value Constraint Field

Representing User Interface Rendering Specifications
Template Rendering Information
Template Element Rendering Information
Template Field Rendering Information
Attribute-Value Field Rendering Information

Appendix A: JSON Schema
Restricting Property Values
Nesting JSON Schema specifications
Reusing JSON Schema specifications with $ref
Representing Arrays in JSON Schema

Appendix B: JSON-LD
JSON-LD @type Field
JSON-LD @id Field

JSON-LD @context Field

Appendix C: Model Change Log
1.6.0
1.5.0
1.4.0
1.3.0
1.1.0

Glossary

References

Introduction
One of the main goals of the CEDAR project is to build an infrastructure for the creation and
storage of machine-readable metadata templates. Metadata templates provide detailed
definitions of the metadata that describes a particular data resource.

In CEDAR, the metadata template describes both the structure and the semantics of that
metadata. The CEDAR system uses metadata templates to create metadata instances, which
describe specific instances of data resources. Users typically generate these metadata
instances to annotate their data.

This document describes the metadata template model developed for the CEDAR project. This
model provides a detailed specification for the representation of metadata template and
metadata template instances.

We first developed a template model to specify the key aspects of template construction
[EKAW2016]. This model represents the core structural characteristics of templates—the
common entities and compositional patterns that define a template. We then produced a
concrete representation of the template model, emphasizing the addition of semantic markup
and constraints. The concrete template model provides a consistent, interoperable information
framework for defining templates and for creating and filling out metadata instances that
correspond to those templates. Finally, we developed a set of tools for creating metadata
templates and for acquiring metadata to generate metadata instances.

Template Model
Our system aims to recursively compose templates from existing, more granular templates. In
our model, we term these sub-templates template elements. Template elements constitute the
building blocks of metadata templates. Template elements may contain one or more atomic
pieces of information, such a text or date field, or may be recursively composed from other
template elements. Template fields are used to represent these atomic pieces of metadata. For
example, a template field could be used to indicate the date at which a measurement was made
for a particular scientific experiment. Template elements are used to recursively combine
template fields or template elements to create more complex descriptions. For example,
template fields “Phone” and “Email” could be contained in a template element called “Contact
Information”, which could itself be contained in a template element called “Person”.

Figure 1. Schema Level of CEDAR’s Template Model

Figure 1 presents a basic overview of the schema level of the CEDAR template model. The
Template, Template Element, and Template Field entities represent their namesake
concepts. All entities have an @type field and are uniquely identifiable via an @id field. They also
contain title and description fields. A variety of built-in template field types are provided.
These include a Text Field, which represents a free text field, and a List Field, which
represent a multiple-choice element. This set can be extended to incorporate additional field
types. Both templates and template elements can optionally have fields or elements nested
inside them. Template elements and fields can be grouped together in a Template to provide an
overall description of a collection of metadata.

The template model also defines instances derived from templates, which we refer to as
template instances. Template instances are created from template specifications. A template
effectively serves as a schema specification for metadata instances conforming to that template.
Figure 2 presents the instance level of the CEDAR template model. As with schema-level
templates and elements, all template and element instances have an @id field, which uniquely
identifies the instance. Template and element instances can also contain an optional @type field,
which can contain one or more URIs that provide type information for the associated instance.
Template field instances can have three subtypes: (1) literal fields, which contain literal values;

(2) IRI fields, which contain IRI values, and (3) multiple value fields, which contain arrays of
either literals or IRIs. Literal fields contain a literal value object that contains an @value field and
an optional @type field. The @value field contains the raw literal value and the @type field
contains one more datatypes for that literal (e,g.,
http://www.w3.org/2001/XMLSchema#integer). IRI value fields contain an IRI value object. In
this case, an @id field is used to store the IRI value; the @type field can be used to optionally
provide one or more types for that IRI.

Figure 2. Instance Level of CEDAR’s Template Model

The overall model provides an abstract structural specification of templates and instances. In
the next section we will outline the development of a concrete representation of this model.

Template Model Concrete Representation
The template model requires a machine-interpretable representation for software systems to
work with the model programmatically . This representation must meet a variety of goals. 1

Primarily, it must describe the structure of templates and the instances generated from these
templates. It must also describe and constrain the various relationships between the entities in
the model. Template representations must be conveniently serializable so that they can be
provided via REST APIs and persisted to storage media. Ideally, the representation should be
based on standard formats so that existing tools can be used to manage model entities. The
representation should also permit easy validation, and easy indexing to support search. To

1 The primary CEDAR REST APIs can be used to work with resources described using this model. An
introduction to these APIs can be found here.

https://github.com/metadatacenter/cedar-docs/wiki/CEDAR-REST-APIs

enable interoperation with controlled terms, a standardized means to annotate templates with
controlled terms is key. Finally, the template format must interoperate with Linked Open Data
technologies such as RDF and OWL, and allow metadata to be represented as RDF graphs.

We identified two key JSON-based technologies can be combined to meet many of the goals
outlined above—while retaining full interoperation with semantic resources: JSON Schema 2

[JSON SCHEMA], and JSON-LD [JSON-LD] . Both are supported by a large variety of 3

Web-centric tools.

JSON Schema is a technology for describing and validating the structure of JSON data. Its
directives—themselves represented as standard JSON elements—can be used to provide a
structural description of any JSON document. JSON documents that are specified with JSON
Schema can be structurally validated against their associated schemas via off-the-shelf tools.
JSON Schema provides a structural specification only—it does not describe the semantics of
JSON documents. A recent technology called JSON-LD (“Linked Data”) was developed to meet
this goal. JSON-LD provides a lightweight syntax to add semantic annotations to JSON
documents. The key goals of JSON-LD are to support the use of Linked Data in Web-based
programming environments, to build interoperable Web services, and to store Linked Data in
JSON-based storage engines. JSON-LD effectively allows JSON documents and their contents
to be made available as Linked Data, offering the potential for machine-interpretable RDF
semantics.

We first outline how we use JSON Schema to describe the structure of templates, template
elements, and template fields and to constrain and validate the instances generated from those
templates. We then show how we use JSON-LD to mark up these specifications, adding
semantic content to the generated instances. We show how this combination of JSON Schema
and JSON-LD provides the capabilities to fully represent the template model and to build a
strong bridge to semantic technologies.

Throughout this document we will use the term artifact to refer generically to model
entities—templates, elements, fields, and template instances. We will use the term schema
artifact to refer to artifacts that contain structural specifications—templates, elements, and
fields—and instance artifact to refer to entities generated from these specifications—currently,
just template instances, though standalone element and field instances are not precluded by the
model.

3 See Appendix B for an overview of JSON-LD.
2 See Appendix A for an overview of JSON Schema.

Representing Artifact Provenance
The CEDAR model defines provenance fields for artifacts. At present, seven core provenance
fields are specified for artifacts. These are:

schema:name This is a Schema.org field that is used to hold the
user-supplied name of the artifact

schema:description This is a Schema.org field that is used to hold the
user-supplied description of the artifact

schema:schemaVersion This is a Schema.org field that is used to hold the
model version used when creating the artifact

pav:createdOn This is a Provenance and Versioning Ontology (PAV)
field that specifies a datetime-encoded value indicating
when the artifact was created.

pav:createdBy This is a PAV field that specifies a IRI-encoded value
indicating who created the artifact.

pav:lastUpdatedOn This is a PAV field that specifies a datetime-encoded
value indicating when the artifact was last updated.

oslc:modifiedBy This is an IRI-encoded field using an Open Services for
Lifecycle Collaboration (OSLC) ontology term that
specifies who updated the artifact last.

The schema prefix identifies the Schema.org namespace https://schema.org/, the pav prefix
identifies the Provenance and Versioning Ontology namespace http://purl.org/pav/, and
the oslc prefix identifies the Open Services ontology namespace
http://open-services.net/ns/core# . 4

4 Later we will formally map these prefixes to their associated namespace IRIs.

https://schema.org/
http://purl.org/pav/
http://open-services.net/ns/core#

Two provenance fields that may optionally be present in artifacts are:

schema:identifier A user-specified identifier for an artifact

pav:derivedFrom If an artifact was copied from another
artifact this field identifies the URI of that
artifact

Note that the JSON Schema title and description fields are also included in an artifact
specification in addition to the Schema.org-based schema:name and schema:description
fields. The JSON Schema field generally holds tool-generated information whereas the
Schema.org-based fields hold user-supplied information.

Representing Schema Artifact Version Information
CEDAR schema artifacts (i.e., templates, elements, and fields) can also be versioned. At
present, instance artifacts are not versioned. The following fields are used to store version
information:

pav:version This is a Provenance and Versioning
Ontology (PAV) field that holds the
version of the artifact. Follows Semantic
Versioning best practices
(https://semver.org/)

bibo:status This is a Bibliographic Ontology
publication status of the artifact. Currently,
valid values are bibo:draft and
bibo:published.

pav:previousVersion This field identifies the artifact that this
artifact was originally copied from, if any

The bibo prefix identifies the Bibliographic Ontology namespace
http://purl.org/ontology/bibo/.

CEDAR artifacts are versioned following standard software artifact versioning practices. The
bibo:status status field is used to indicate whether an artifact is in draft state (bibo:draft) or
is published (bibo:published). Artifacts begin in a draft state and when finialized become
published. A single new version can be derived from a published artifact, using the
pav:previousVersion field to point to the previous version. Only a single new version can be
derived from a published artifact so no version branching is allowed. A new artifact's version
number must be later than the artifacts it is derived from and will begin in a draft state.

http://purl.org/ontology/bibo/

Representing Artifact Structure Using JSON Schema
With JSON Schema we define the structure of the primary artifacts in the CEDAR template
model. We first outline its use to define the three core artifacts in the model: template fields,
template elements, and templates. We then describe the structure of template instances that
conform to the schema specification provided by templates.

Representing Template Fields
Template fields are used to describe an atomic piece of metadata. Informally, they correspond to
a single field in a form, which when filled out contains a single value. In principle, a template
field could be stored as a simple JSON property value, such as string or number. However, in
many cases we would like the option to add additional metadata to describe template fields. At a
minimum, we want users to record a name and description of each field. Hence, we use a JSON
object to describe template fields.

The template field representation includes a value field, in addition to the other descriptive
information.

We use the JSON-LD @value field of type string to hold raw literal values. We also use the
standard JSON Schema title and description fields to hold a name and description for the
field.

For example, here is the definition of a Full Name template field, which contains the full name of
a person as a single string : 5

{
 "$schema": "http://json-schema.org/draft-04/schema#",
 "type": "object",
 "title": "Full Name", "description": "Full name template field",
 "properties": { "@value": { "type": "string" } },
 "required": ["@value"], "additionalProperties": false,
 "schema:name": "Full Name",
 "schema:description": "A person's full name",
 "schema:schemaVersion": "1.6.0",
 "pav:version": "1.1.0",
 "bibo:status": "bibo:released",
 "pav:createdOn": "2017-05-03T09:00:52-0700",
 "pav:createdBy": "https://metadatacenter.org/users/8d787b98",
 "pav:lastUpdatedOn": "2017-05-03T09:00:52-0700",
 "oslc:modifiedBy": "https://metadatacenter.org/users/8d787b98"
}

5 A useful online JSON Schema validator can be found at www.jsonschemavalidator.net.

A conforming instance of this template field could look as follows:

{ "@value": "John Smith" }

In some cases, we may add further type restrictions to literals. For example, if we know that the
literal is an email address we can use the JSON Schema format keyword with type email to
restrict the value.

For example, the specification for an email field could look as follows:

{
 "$schema": "http://json-schema.org/draft-04/schema#",
 "type": "object",
 "title": "Email", "description": "Email template field",
 "properties": { "@value": { "type": "string", "format": "email" } },
 "required": ["@value"], "additionalProperties": false,
 "schema:name": "Email",
 "schema:description": "An email address",
 "schema:schemaVersion": "1.6.0",
 "pav:version": "1.1.0",
 "bibo:status": "bibo:released",
 "pav:createdOn”: "2017-05-03T09:00:52-0700",
 "pav:createdBy": "https://metadatacenter.org/users/8d787b98",
 "pav:lastUpdatedOn": "2017-05-03T09:00:52-0700",
 "oslc:modifiedBy": "https://metadatacenter.org/users/8d787b98"
}

Similar format restrictions can be used for the number, date-time, ipv4, and ipv6 JSON
Schema formats.

The CEDAR model also distinguishes literals values from IRI values. We use the JSON-LD @id
field in place of the @value field to make this distinction.

For example, here is the definition of a Home Page template field, which contains the URL of a
page:

{
 "$schema": "http://json-schema.org/draft-04/schema#",
 "type": "object",
 "title": "Home Page", "description": "Home page template field",
 "properties": { "@id": { "type": "string", "format": "uri" } },
 "required": ["@id"], "additionalProperties": false,
 "schema:name": "Home Page",
 "schema:description": "Enter a home page URL",

 "schema:schemaVersion": "1.6.0",
 "pav:version": "1.1.0",
 "bibo:status": "bibo:released",
 "pav:createdOn": "2017-05-03T09:00:52-0700",
 "pav:createdBy": "https://metadatacenter.org/users/8d787b98",
 "pav:lastUpdatedOn": "2017-05-03T09:00:52-0700",
 "oslc:modifiedBy": "https://metadatacenter.org/users/8d787b98"
}

A conforming instance of this template field could look as follows:

{ "@id": "https://example.com/home/JohnSmith.html" }

By default the schema:name field can effectively be treated as the question but in some cases
customized questions are desirable. Template fields also support two additional optional fields
that can be used to store question text that can be presented to users. To support this we allow
template fields to contain the skos:prefLabel and skos:altLabel fields. The skos:prefLabel
field can be used to store the default question text for a field that is presented to users; the
skos:altLabel field can contain alternate question text that may optionally be presented.

For fields with an IRI value (i.e., those using an @id instead of a @value field to hold values) we
support the presence of a field to hold a user-friend label for the IRI. We use the rdfs:label
field to store this label. This field is optional and we also allow its value to be null. We also allow
a field called skos:notation. This field can store values that may be intended for database
storage. The JSON Schema field specification must indicate the requirement for these
additional fields.

Here is the previous Home Page template field specification extended to allow field instances to
contain the rdfs:label and skos:notation fields:

{
 "$schema": "http://json-schema.org/draft-04/schema#",
 "title": "Home Page", "description": "Home page template field",
 "type": "object",
 "properties": {
 "@id": { "type": "string", "format": "uri" },
 "rdfs:label": { "type": ["string", null] },
 "skos:notation": { "type": ["string", null] }
 },
 "required": ["@id"], "additionalProperties": false,
 "schema:name": "Home Page",
 "schema:description": "Enter a home page URL",
 "schema:schemaVersion": "1.6.0",
 "pav:version": "1.1.0",
 "bibo:status": "bibo:released",

 "pav:createdOn”: "2017-05-03T09:00:52-0700",
 "pav:createdBy": "https://metadatacenter.org/users/8d787b98",
 "pav:lastUpdatedOn": "2017-05-03T09:00:52-0700",
 "oslc:modifiedBy": "https://metadatacenter.org/users/8d787b98"
}

Representing Template Fields with Multiple Values
Some fields can also contain multiple values. In the CEDAR model these multiple values are
stored as an array of objects containing @value or @id fields.

For example, the content of a multi-value literal field that contains the strings "O1" and "O2"
could be represented as follows:

[{ "@value": "O1" }, { "@value": "O2" }]

Similarly, the content of a multi-value IRI field that contains, say, the IRIs
http://example.com/A1 and http://example.com/A2 could be represented as follows:

[{ "@id": "http://example.com/A1", "rdfs:label": "A1" },
 { "@id": "http://example.com/A2", "rdfs:label": "A2" }]

JSON Schema has inbuilt support for indicating that the value of a JSON field can be an array
(see Appendix A and Section 4.1.4 of [JSON SCHEMA]).

The template field schema to capture this representation could look as follows:

{
 "$schema": "http://json-schema.org/draft-04/schema#"
 "title": "Home Pages", "description": "Home pages template field",
 "type": "array", "minItems": 1,
 "items": {
 "type": "object",
 "properties": {
 "@id": { "type": "string", "format": "uri" },
 "rdfs:label": { "type": ["string", null] },
 "skos:notation": { "type": ["string", null] }
 },
 "required": ["@id"], "additionalProperties": false,
 "schema:name": "Home Page",
 "schema:description": "Enter a home page URL",
 "schema:schemaVersion": "1.6.0",
 "pav:version": "1.1.0",
 "bibo:status": "bibo:released",
 "pav:createdOn”: "2017-05-03T09:00:52-0700",
 "pav:createdBy": "https://metadatacenter.org/users/8d787b98",

http://example.com/A1
http://example.com/A1

 "pav:lastUpdatedOn": "2017-05-03T09:00:52-0700",
 "oslc:modifiedBy": "https://metadatacenter.org/users/8d787b98"
 }
}

As can be seen, we use the JSON Schema array directive to indicate that the field values are
stored in an array. We also indicate that the array must contain at least one item. Note that this
approach allows each value object to contain provenance information.

Representing Template Elements
Template elements offer composition—they can include multiple template fields and/or template
elements. Template elements are represented using an approach equivalent to the one used to
represent template fields. Again, we specify that a template element must be represented as a
JSON object. We can then restrict each nested template field or template element using nested
JSON Schema specifications.

For example, the definition of an Investigator template element is shown below. It contains one
nested template field called fullName.

{
 "$schema": "http://json-schema.org/draft-04/schema#",
 "title": "Investigator", "description": "Investigator element",
 "type": "object",
 "properties": {
 "fullName": {
 "type": "object",
 "title": "Full Name", "description": "Full name template field",
 "properties": { "@value": { "type": "string" } },
 "required": ["@value"], "additionalProperties": false,
 "schema:name": "Full Name",
 "schema:description": "A person's full name",
 "schema:schemaVersion": "1.6.0",
 "pav:version": "1.1.0",
 "bibo:status": "bibo:released",
 "pav:createdOn”: "2017-05-03T09:00:52-0700",
 "pav:createdBy": "https://metadatacenter.org/users/8d787b98",
 "pav:lastUpdatedOn": "2017-05-03T09:00:52-0700",
 "oslc:modifiedBy": "https://metadatacenter.org/users/8d787b98"
 }
 },
 "required": ["fullName"],
 "additionalProperties": false,
 "schema:name": "Investigator",
 "schema:description": "The lead investigator of a project",
 "schema:schemaVersion": "1.6.0",
 "pav:version": "1.1.0",

 "bibo:status": "bibo:released",
 "pav:createdOn”: "2017-05-03T09:00:52-0700",
 "pav:createdBy": "https://metadatacenter.org/users/8d787b98",
 "pav:lastUpdatedOn": "2017-05-03T09:00:52-0700",
 "oslc:modifiedBy": "https://metadatacenter.org/users/8d787b98"
}

As can be seen above, the template element specification requires that the nested fullName
field is present in instances.

A conforming template element instance could look like the following:

{
 "fullName": { "@value": "Dr. P.I." },
}

As with template fields, we do not require that element instances contain provenance fields.

Representing Templates
The representation of templates follows the same principles as template elements. Like
template elements, templates can have nested element values and template elements.

We require that conforming template instances contain a schema:isBasedOn field to identify the
template to which they conform (where the schema prefix identifies the Schema.org
namespace https://schema.org/). Instances of template must also include provenance fields.
The schema specification for templates must include this requirement. A template's JSON
Schema properties fields can be used to express these requirements as follows:

"properties": {
 "schema:isBasedOn": { "type": "string", "format": "uri" },
 "schema:name": { "type": "string", "minLength": 1 },
 "schema:description": { "type": "string", },
 "pav:createdOn": { "type": ["string", "null"], "format": "date-time" },
 "pav:createdBy": { "type": ["string", "null"], "format": "uri" },
 "pav:lastUpdatedOn": { "type": ["string", "null"], "format": "date-time" },
 "oslc:modifiedBy": { "type": ["string", "null"], "format": "date-time" }
},
"required": ["schema:isBasedOn", "schema:name", "schema:description",
 "pav:createdOn", "pav:createdBy" "pav:lastUpdatedOn",
 "oslc:modifiedBy"],
"additionalProperties": false

Note that with the exception of the schema:schemaVersion field we make all provenance fields
required for template instances. With the exception of schema:isBasedOn, schema:name and
schema:description fields, we also allow these provenance fields to be present with null

https://schema.org/

values. Typically, these provenance fields are generated by server components so allowing nulls
lets clients generate instances without values for these fields and still pass validation.

A complete template specification that contains a nested study title field and a nested principal
investigator element could then look as follows:

{
 "$schema": "http://json-schema.org/draft-04/schema#",
 "title": "Investigation", "description": "Investigation template",
 "type": "object",
 "properties": {
 "schema:isBasedOn": { "type": "string", "format": "uri" },
 "schema:name": { "type": "string", "minLength": 1 },
 "schema:description": { "type": "string" }
 "pav:createdOn": { "type":["string", "null"], "format": "date-time" },
 "pav:createdBy": { "type":["string", "null"], "format": "uri" },
 "pav:lastUpdatedOn": { "type":["string", "null"], "format": "date-time" },
 "oslc:modifiedBy": { "type":["string", "null"], "format": "date-time" },
 "studyTitle": { ... },
 "pi": {... }
 },
 "required":
 ["schema:isBasedOn", "schema:name", "schema:description",
 "pav:createdOn", "pav:createdBy", "pav:lastUpdatedOn",
 "oslc:modifiedBy", "studyTitle", "pi"],
 "additionalProperties": false,
 "schema:name": "Investigation",
 "schema:description": "An investigation",
 "schema:schemaVersion": "1.6.0",
 "pav:version": "1.1.0",
 "bibo:status": "bibo:published",
 "pav:createdOn”: "2017-05-03T09:00:52-0700",
 "pav:createdBy": "https://metadatacenter.org/users/8d787b98",
 "pav:lastUpdatedOn": "2017-05-03T09:00:52-0700",
 "oslc:modifiedBy": "https://metadatacenter.org/users/8d787b98"
}

Here is an example of a template instance conforming to the above template:

{
 "schema:isBasedOn": "https://repo.metadatacenter.org/templates/43453",
 "schema:name": "Study",
 "schema:description": "Study template instance",
 "pav:createdOn”: "2017-05-03T09:00:52-0700",
 "pav:createdBy": "https://metadatacenter.org/users/8d787b98",
 "pav:lastUpdatedOn": "2017-05-03T09:00:52-0700",
 "oslc:modifiedBy": "https://metadatacenter.org/users/8d787b98",

https://repo.metadatacenter.org/templates/43453

 "studyTitle": { "@value": "Immune Biomarkers" },
 "pi": { "fullName": { "@value": "Dr. P.I." } }
}

Representing Multiple Instances of Template Elements and Template Fields
The above specifications support the definition of nested template elements or element fields
that contain exactly one instance of each. For example, only one principal investigator template
element instance is allowed inside an investigation template instance. In many cases
we would like items or elements to be capable of acquiring multiple instances at runtime.
As mentioned earlier, JSON Schema has inbuilt support for indicating that the value of a JSON
field can be an array (see Appendix A and Section 4.1.4 of [JSON SCHEMA]).

In the CEDAR template model, this approach can be used to indicate that that a template
instance may contain, or must contain, multiple instances of nested template elements or
template fields.

For example, we can extend the earlier investigation template to indicate that an investigation
can have between 1 and 4 principal investigators as follows:

{
 "title": "Investigation", "description": "Investigation template",
 "type": "object",
 "properties": {
 "schema:isBasedOn": { "type": "string", "format": "uri" },
 "schema:name": { "type": "string", "minLength": 1 },
 "schema:description": { "type": "string" },
 "pav:createdOn": { "type":["string", "null"], "format": "date-time" },
 "pav:createdBy": { "type":["string", "null"], "format": "uri" },
 "pav:lastUpdatedOn": { "type":["string", "null"], "format": "date-time" },
 "oslc:modifiedBy": { "type":["string", "null"], "format": "date-time" },
 "studyTitle": { ... },
 "pi": {
 "type": array, "minItems" : 1, "maxItems" : 4,
 "items" : {
 "type": "object",
 "title": "Principal Investigator",
 "description": "Principal investigator element",
 ...
 }
 }
 },
 "required": ["schema:isBasedOn", "schema:name", "schema:description",
 "pav:createdOn", "pav:createdBy", "pav:lastUpdatedOn",
 "oslc:modifiedBy", "studyName", "pis"],
 "additionalProperties": false,

 "schema:name": "Investigation",
 "schema:description": "An investigation",
 "schema:schemaVersion": "1.6.0",
 "pav:version": "1.1.0",
 "bibo:status": "bibo:released",
 "pav:createdOn”: "2017-05-03T09:00:52-0700",
 "pav:createdBy": "https://metadatacenter.org/users/8d787b98",
 "pav:lastUpdatedOn": "2017-05-03T09:00:52-0700",
 "oslc:modifiedBy": "https://metadatacenter.org/users/8d787b98",
 "$schema": "http://json-schema.org/draft-04/schema#"
}

Representing Artifact Semantics using JSON-LD
JSON Schema is useful for defining structural restrictions on JSON documents. It can also be
used to specify basic type restrictions on field values. However, it provides a very basic set of
built‑in type restrictions. It also does not provide a way to add additional types or to interoperate
with types defined in external sources, such as RDF- or OWL-based ontologies.

As mentioned, JSON-LD [JSON-LD] was developed to meet this goal. JSON-LD provides a 6

lightweight syntax to add semantic annotations to JSON documents that can restrict the types
and values of fields using terms from external vocabularies. Like JSON Schema, it adds some
custom fields with well-known names to a JSON document to provide additional markup
information.

JSON-LD provides three core fields to add semantic markup to JSON documents: @context,
@type, and @id. The @context field is used to define prefixes for controlled vocabularies and to
map JSON properties to controlled vocabularies; the @type field indicates the semantic type of a
JSON object; the @id field gives a unique identifier to a JSON object instance. JSON-LD is used
to mark up the structural specification to add semantic content to the CEDAR templates and
instances. Essentially, JSON-LD is used to add type information to JSON-described content.

Here, for example, is a JSON-LD–enhanced template instance representing a study (with
JSON-LD clauses in bold):

{
 "@type": "http://semantic-dicom.org/dcm#Study",
 "@id": "https://repo.metadatacenter.org/template_instances/55417",
 "@context": {
 "rdfs": "http://www.w3.org/2000/01/rdf-schema#",
 "xsd": "http://www.w3.org/2001/XMLSchema#",
 "pav": "http://purl.org/pav/",

6 See Appendix B for an introduction to JSON-LD; a good introduction can also be found at
json-ld.org.

 "schema": "http://schema.org/",
 "oslc": "http://open-services.net/ns/core#",
 "schema:isBasedOn": { "@type": "@id" },
 "schema:name": { "@type": "xsd:string", "minLength": 1 },
 "schema:description": { "@type": "xsd:string" },
 "pav:createdOn": { "@type": "xsd:dateTime" },
 "pav:createdBy": { "@type": "@id" },
 "pav:lastUpdatedOn": { "@type": "xsd:dateTime" },
 "oslc:modifiedBy": { "@type": "@id" },
 "studyTitle": "https://schema.org/title",
 "pi": "https://mycompany.org/property/hasPI"
 },
 "studyTitle": { "@value": "Immune biomarkers study" },
 "pi": {
 "@type": "https://schema.org/Person",
 "@id": "https://repo.metadatacenter.org/element_instances/88417",
 "@context": { "fullName": "https://schema.org/name" },
 "fullName": { "@value": "Dr. P.I" }
 },
 "schema:isBasedOn": "https://repo.metadatacenter.org/templates/4353",
 "schema:name": "Study",
 "schema:description": "Study template instance",
 "pav:createdOn": "2017-05-03T09:00:52-0700",
 "pav:createdBy": "https://metadatacenter.org/users/8d787b98",
 "pav:lastUpdatedOn": "2017-05-03T09:00:52-0700",
 "oslc:modifiedBy": "https://metadatacenter.org/users/8d787b98"
}

Note that we have added JSON-LD @context, @type, and @id fields to provide semantic
markup. The @context field ensures that properties are mapped to properties in controlled
vocabularies. The @context specification does a full mapping of prefixes to namespaces for all
CEDAR model prefixes and also specifies their datatypes. The @type field indicates the
semantic type of the instance, which in the case above is the Study class in the Radiation
Oncology Ontology. Finally, the @id field gives a unique identifier to the instance.

The JSON Schema specification can ensure that conforming instances are marked up with
JSON-LD, both by demanding that specific fields are present and by restricting the content of
those fields.

If we want to enforce that the @type field is contained in the instance and uses a specific IRI we
can do so as follows:

"properties": { "@type": { "enum": ["http://semantic-dicom.org/dcm#Study"] }}

If we want to enforce that the @id field is contained in the instance and contains an IRI we can
do so as follows:

"properties": { "@id": { "type": "string", "format": "uri" }}

The @context field is far more complex but can be declaratively specified as follows:

"properties": {
 "@context": {
 "type": "object",
 "properties": {
 "rdfs": { "type": "string", "format": "uri",
 "enum": ["http://www.w3.org/2000/01/rdf-schema#"] },
 "xsd": { "type": "string", "format": "uri",
 "enum": ["http://www.w3.org/2001/XMLSchema#"] },
 "pav": { "type": "string", "format": "uri",
 "enum": ["http://purl.org/pav/"] },
 "schema": { "type": "string", "format": "uri",
 "enum": ["http://schema.org/"] },
 "oslc": { "type": "string", "format": "uri",
 "enum": ["http://open-services.net/ns/core#"] },
 "skos": { "type": "string", "format": "uri",
 "enum": ["http://www.w3.org/2004/02/skos/core#"] },
 "schema:isBasedOn": { "type": "object",
 "properties": { "@type": { "type": "string", "enum": ["@id"] }}},
 "schema:name": { "type": "object",
 "properties": { "@type": { "type": "string", "enum": ["xsd:string"] }}},
 "schema:description": { "type": "object",
 "properties": {"@type": { "type": "string", "enum": ["xsd:string"] }}},
 "pav:createdOn": { "type": "object",
 "properties": {"@type": { "type": "string", "enum": ["xsd:dateTime"] }}},
 "pav:createdBy": { "type": "object",
 "properties": {"@type": { "type": "string", "enum": ["@id"] }}},
 "pav:lastUpdatedOn": { "type": "object",
 "properties": {"@type": { "type": "string", "enum": ["xsd:dateTime"] }}},
 "oslc:modifiedBy": { "type": "object",
 "properties": { "@type": { "type": "string", "enum": ["@id"] }}},
 // Nested element and field IRI mappings here
 },
 "required": ["rdf", "xsd", "pav", "schema", "oslc", "schema:isBasedOn",
 "schema:name", "schema:description", "pav:createdOn", "pav:createdBy",
 "pav:lastUpdatedOn", "oslc:modifiedBy"
], "additionalProperties": false
 }
}

The above schema specification is basically requiring that a template instance contains the
following context definition:

"@context": {
 "rdfs": "http://www.w3.org/2000/01/rdf-schema#",
 "xsd": "http://www.w3.org/2001/XMLSchema#",
 "pav": "http://purl.org/pav/",
 "schema": "http://schema.org/",
 "oslc": "http://open-services.net/ns/core#",
 "schema:isBasedOn": { "@type": "@id" },
 "schema:name": { "@type": "xsd:string" },
 "schema:description": { "@type": "xsd:string" },
 "pav:createdOn": { "@type": "xsd:dateTime" },
 "pav:createdBy": { "@type": "@id" },
 "pav:lastUpdatedOn": { "@type": "xsd:dateTime" },
 "oslc:modifiedBy": { "@type": "@id" }
}

Note that nested elements and fields will imply additional context specifications to ensure
property assignments are made. For example, if a template contains a studyTitle field and we
would like to map that name to the IRI https://schema.org/title we can add it to the
template context definition as follows:

"@context": {
 "properties": {
 ...
 "studyTitle": { "enum": ["https://schema.org/title"]
 }
}

This restriction forces instances conforming to the template to contain the following property
assignment in their context definition:

 "studyTitle": "https://schema.org/title"

Coupled with the type assignment to templates, elements and fields, this property assignment
allows relationships between nested elements and fields to be mapped to controlled terms.

The overall template specification also makes the @context, @type, and @id fields required to
ensure that instances are self descriptive.

For example, here is a JSON Schema template specification for the above study instance with
clauses (marked in bold) ensuring that conforming instances carry appropriate JSON-LD
markup (we elide the full context definition for brevity):

{
 "$schema": "http://json-schema.org/draft-04/schema#",
 "title": "Study", "description": "Study template",

 "@type": "https://repo.metadatacenter.org/core/Template",
 "@id": "https://repo.metadatacenter.org/templates/4353",
 "properties": {
 "schema:isBasedOn": { "type": "string", "format": "uri" },
 "schema:name": { "type": "string", "minLength": 1 },
 "schema:description": { "type": "string", "minLength": 1 }
 "pav:createdOn": { "type":["string", "null"], "format": "date-time" },
 "pav:createdBy": { "type":["string", "null"], "format": "uri" },
 "pav:lastUpdatedOn": { "type":["string", "null"], "format": "date-time" },
 "oslc:modifiedBy": { "type":["string", "null"], "format": "date-time" },
 "@type": { "enum": ["http://semantic-dicom.org/dcm#Study"] },
 "@id": { "type": "string", "format": "uri" },
 "@context": {
 "properties": {
 ...
 "studyTitle": { "enum": ["https://schema.org/title"] },
 "pi": { "enum": ["https://mycompany.org/property/hasPI"] }
 },
 "required": [..., "studyTitle", "pi"], "additionalProperties": false
 },
 "studyTitle": { ... },
 "pi": { ... }
 },
 "required":
 ["schema:isBasedOn", "schema:isBasedOn", "schema:name",
 "schema:description", "pav:createdOn", "pav:createdBy",
 "pav:lastUpdatedOn", "oslc:modifiedBy",
 "@context", "@type", "@id", "studyTitle", "pi"],
 "additionalProperties": false,
 "schema:name": "Study",
 "schema:description": "A clinical study",
 "schema:schemaVersion": "1.6.0"
 "pav:version": "1.1.0"
 "bibo:status": "bibo:published"
 "pav:createdOn": "2017-05-03T09:00:52-0700",
 "pav:createdBy": "https://metadatacenter.org/users/8d787b98",
 "pav:lastUpdatedOn": "2017-05-03T09:00:52-0700",
 "oslc:modifiedBy": "https://metadatacenter.org/users/8d787b98"
}

As can be seen in this example, the JSON Schema template specification can ensure that
template instances contain a significant amount of JSON-LD–encoded type information. Here,
we are forcing the @context, @type, and @id fields in an instance to carry specific controlled
terms. These instances can be automatically checked for conformance against the template
specification. This use of JSON Schema is completely standard and instance validation can be
performed with off-the-shelf tools. We also developed a JSON Schema-based validation
schema that can be used to validate template, elements, and fields [CEDAR-SCHEMA].

Representing Additional Artifact Metadata using JSON-LD
The CEDAR model requires some basic metadata for CEDAR artifacts, such as the name of the
artifact (schema:name), its version (schema:schemaVersion), and its creator (pav:createdOn) . 7

However, sometimes these basic metadata fields are not enough. In some cases, users need to
attach additional metadata to their artifacts. Some examples of these additional metadata can
be the identifier used to refer to the artifact in an external system, the identifier of the
organization that developed the artifact, and the name of the project where the artifact is being
used.

To allow users to add custom metadata to CEDAR artifacts, the CEDAR model provides support
for additional metadata fields in Templates, Elements, and Fields. These additional metadata
are represented as part of an optional, nested object at the root level of the artifact’s JSON
Schema specification, defined using the JSON-LD keyword @nest. By using @nest, JSON-LD
processors will ignore the nesting and will process the contents as if they were created directly
within the containing object, that is, at the root level of the artifact’s JSON Schema, where all the
other artifact metadata are declared. In our model, values for the metadata fields in the @nest
object are optional and are specified using any of the six accepted JSON data types (i.e., string,
number, boolean, null/empty, object, and array).

For example, here is a JSON Schema Template specification for a Study, with a custom
metadata field protocol ID, which captures an array of protocol identifiers associated with the
template. Note that the required field does not contain a @nest value, because these additional
metadata fields are optional.

{
 "schema:name": "Study",
 "@id": "https://repo.metadatacenter.org/templates/ee2f28",
 "@context": {
 ...
 "protocol ID": "https://schema.metadatacenter.org/properties/c80ace7"
 },
 ...
 "@nest": {
 "protocol ID": ["0904", "0374", "1232"]
 },
 "required": [
 "@context",
 "@id",
 "schema:isBasedOn",
 "schema:name",
 "schema:description",

7 For a full list of CEDAR artifacts’ provenance metadata, see Representing Artifact Provenance.

 "pav:createdOn",
 "pav:createdBy",
 "pav:lastUpdatedOn",
 "oslc:modifiedBy",
 "studyTitle"
],
 ...
}

Here is the representation of the additional metadata (protocol identifiers) from the previous
example expressed in RDF syntax. The example shows how there is no intermediate node
between the template and the protocol ids associated to it. Because we used @nest, the JSON
processor understands that the fields defined inside the @nest object refer to properties of the
containing object (the template).

...
<https://repo.metadatacenter.org/templates/ee2f28>

<https://schema.metadatacenter.org/properties/c80ace7> "0374" .
<https://repo.metadatacenter.org/templates/ee2f28>
 <https://schema.metadatacenter.org/properties/c80ace7> "0904" .
<https://repo.metadatacenter.org/templates/ee2f28>

<https://schema.metadatacenter.org/properties/c80ace7> "1232" .

...

Representing Instances as RDF
Note that CEDAR's JSON-LD instance representation can be automatically converted to an
RDF representation. Here, for example, is a Turtle representation of the above study template
instance:

<https://repo.metadatacenter.org/template_instances/55417>
 a <http://semantic-dicom.org/dcm#Study> ;
 schema:name "Immune biomarkers" ;
 schema:description "Metadata about an immune biomarkers study" ;
 schema:isBasedOn <https://repo.metadatacenter.org/template/4343> ;
 oslc:modifiedBy <https://repo.metadatacenter.net/users/6d21a887> ;
 pav:createdBy <https://repo.metadatacenter.net/users/6d21a887> ;
 pav:createdOn "2016-06-29T10:58:26-0700"^^xsd:dateTime ;
 pav:lastUpdatedOn "2016-06-29T10:58:26-0700"^^xsd:dateTime ;
 myschema:hasStudyTitle "Immune biomarkers study" ;
 myschema:hasPI [
 a <https://schema.org/Person> ;
 schema:name "Dr. P.I";
 schema:address "Stanford, CA 94305, USA"
] .

Expressing Field Value Constraints
JSON Schema allows us to express a very limited set of value constraints. We can, for example,
state that the value of a field should be a particular value, or selected from a set of values. We
can also restrict a field value to be of a particular type or format.

In CEDAR, we require more advanced constraints on field values that we want to come from
controlled terminologies. For example, we may specify that the value of a field should be the IRI
of a class in a particular ontology.

There are four main constraint types provided by CEDAR. We want to encode the constraints on
the possible values for a particular field to (1) specific ontology classes, (2) ontology branches,
(3) classes from specific ontologies, and (4) value sets, which are simple collections of values.
Where a constraint is a collections of values, individual values may be excluded from
consideration.

The possible values of a field could also be composed of some combination of the above four
constraint types; the union of all the constraints is used as the set of values that may be entered
by the user.

Additional constraints may be placed on numeric or string field values. The field called
_valueContraints is used to express all constraints that cannot be represented directly in
JSON Schema.

The _valueConstraints field
A _valueConstraints field that is contained inside a template field. The _valueConstraints
field will have four possible array subfields for the four types of value sources (ontologies,
classes, branches, and value sets) and and additional array field containing specifications for
literal values. This field can also indicate whether the field is a multi-choice field, whether a
value is required or not, and may also contain a default value. Other options include restrictions
for numeric and string fields.

The overall JSON format adopted is as follows:

{
 "_valueConstraints": {
 "requiredValue": true | false,
 "multipleChoice": true | false,
 "numberType": "xsd:integer" | ...,
 "unitOfMeasure": "...",
 "minValue":
 "maxValue":

 "decimalPlaces":
 "minLength":
 "maxLength":
 "temporalType": "xsd:date" | "xsd:dateTime" | "xsd:time",
 "ontologies": [...],
 "valueSets": [...],
 "classes": [...],
 "branches": [...],
 "literals": [...],
 "defaultValue": "..."
 }
}

These fields are now explained in turn.

General Value Constraint Fields
Boolean field requiredValue indicates whether a value is required for a field. A boolean
multipleChoice field indicates if more than one answer is acceptable for a field.

String-based fields may have properties minLength and maxLength that indicate minimum and
maximum lengths for strings.

Numeric Value Constraint Fields
Numeric fields can contain a field called numberType in the _valueConstraints object
indicating the field datatype and a unitOfMeasure field indicating the associated units. Numeric
fields can also contain fields called minValue and maxValue to indicate minimum and maximum
values for numeric fields. Floating point fields can also contain a decimalPlace field specifying
the number of decimal places displayed.

Temporal Value Constraint Fields
Temporal fields can contain a field called temporalType in the _valueConstraints object.
Three temporal types are currently supported: xsd:date, xsd:dateTime, and xsd:time.

The ontologies Value Constraint Field
This field contains a set of ontologies from which controlled terms can be selected. In stores an
array of IRIs of ontologies, together with an acronym and short name for each specified
ontology.

The following example shows an ontologies value constraint that specifies that field values
should come only from the MEDDRA and RXNORM ontologies:

"ontologies": [
 {

 "uri": "http://bioportal.bioontology.org/ontologies/MEDDRA",
 "acronym": "MEDDRA",
 "name": "Medical Dictionary for Regulatory Activities Terminology"
 },
 {
 "uri": "http://bioportal.bioontology.org/ontologies/RXNORM",
 "acronym": "RXNORM",
 "name": "RxNorm Vocabulary"
 }
]

The classes Value Constraint Field
A common use case is to constrain the values of a field to a predefined set of classes, not
necessarily from the same ontology. For example, to constrain the possible values for a field
called studyType to one of the classes “Observational Study”
(http://ncicb.nci.nih.gov/xml/owl/EVS/Thesaurus.owl#C16084) from the NCIT ontology
and “Longitudinal Study”
(http://ncicb.nci.nih.gov/xml/owl/EVS/Thesaurus.owl#Longitudinal_Study) from the
SYN ontology one can do the following:

{
 "studyType": {
 ...
 "_valueConstraints": {
 "classes": [
 {
 "uri": "http://ncicb.nci.nih.gov/xml/owl/EVS/Thesaurus.owl#C16084",
 "label": "Observational",
 "default": true
 },
 {
 "uri":
"http://ncicb.nci.nih.gov/xml/owl/EVS/Thesaurus.owl#Longitudinal_Study",
 "label": "Longitudinal",
 "default": false
 }
],
 "multipleChoice": false
 }
 }
}

The branches Value Constraint Field
The branches field is analogous to the ontologies field, but restricts values to branches within
ontologies.

Hers is an example that restricts the possible values to classes in branches rooted in assay
classes in the Ontology of Biomedical Investigation and in the GALEN ontology.

{
 "_valueConstraints": {
 "branches": [
 {
 "uri": "http://purl.obolibrary.org/obo/OBI_0000070",
 "maxDepth": 3,
 "includesRoot": false
 },
 {
 "uri": "http://www.co-ode.org/ontologies/galen#Assay",
 "includesRoot": false
 }
],
 "multipleChoice": true
 }
}

The valueSets Value Constraint Field
This field constrains the accepted values to one of several classes from particular value sets.

The following example shows a value set constraint that specifies that field values should come
only from the ACE Inhibitor or ARB and ADHD Medications NLM value sets:

{
 "_valueConstraints": {
 "valueSets": [
 {
 "name": "ACE Inhibitor or ARB",
 "vsCollection": "http://data.bioontology.org/ontologies/NLMVS",
 "uri": "http://purl.bioontology.org/ontology/NLMVS/2.16.32",
 "numTerms": 3
 },
 {
 "name": "ADHD Medications",
 "vsCollection": "http://data.bioontology.org/ontologies/NLMVS",
 "uri": "http://purl.bioontology.org/ontology/NLMVS/2.16.840",
 "numTerms": 33
 }
]
 }
}

The literals Value Constraint Field
This field constrains the accepted values to one or several string literals.

The following example shows a literals constraint that specifies that field values should come
only from the values “Germany”, “France”, and “UK”:

{
 "_valueConstraints": {
 "literals": [
 {
 "label": "Germany"
 },
 {
 "label": "France"
 },
 {
 "label": "U.K."
 }
]
 }
}

Each option within a literal choice can also have an optional boolean field called
selectedByDefault. When present and set to true this field indicates that this option is selected
when presented.

The defaultValue Value Constraint Field
This field can be used to store the default value for string- and URI-based fields.

For string-based fields the value is simply stored as a string. For example, of the default value
for a field is "Yes" it would be stored as follows:

"defaultValue": "Yes"

For URI-based fields the type of the value is stored in a field called type. Possible values are
"Value" or "OntologyClass". The default URI is stored in a field called termURI; the source
ontology for the term is contained in a field called sourceURI.

"defaultValue": {
 "type": "Value" | "OntologyClass",
 "sourceUri": <URI>,
 "termUri": <URI>
}

Representing User Interface Rendering Specifications
CEDAR’s templates can also contain markup that can drive knowledge acquisition tools. This
markup has no effect on the semantics of templates, elements, or fields. It is used at design
time to indicate rendering preferences when displaying templates, and at instance population
time to specify types of user interface elements that should be used when generating instances
from templates.

In a CEDAR template all user interface markup is contained in a field called _ui. This field is
present in templates, template elements, and field elements. Instances do not contain this user
interface field. The associated template is used to indicate how populated instances are
displayed. The user interface field contains no modeling information - it specifies rendering
choices only.

Template Rendering Information
CEDAR templates contain an ordered collection of template elements and fields. Since JSON
Schema does not have directives to specify field ordering we store this order in the _ui field. We
use a field called order to store this information. This field contains an array containing the
names of the enclosed fields and elements, with the order following the array order.

Since a template can have multiple pages and each page can contain a mixture of template
elements and fields, a pages specification is also needed. A field call pages contains the
information. This field contains a two-dimensional array. The first dimension stores the page
ordering. Each element in this array stores the order of template elements and fields on a page.

A field called propertyLabels is used to map JSON field names to customized display names
for the enclosing template or element. It contains a map of JSON field names to display names.
Similarly, an optional field called propertyDescriptions is used to customize field descriptions.

The optional fields header and footer are used to specify header and footer information for the
template. The header and the footer will be displayed by the metadata acquisition tool when
rendering the template.

For example, a template containing two pages, each of which has two template elements or
fields could look as follows:

"_ui": {
 "order": [
 "principalInvestigator", "study", "contactInformation", "institution"
],
 "pages": [
 ["principalInvestigator", "study"],

 ["contactInformation", "institution"]
],
 "propertyLabels": {
 "name": "PI Name"
 },
 "propertyDescriptions": {
 "name": "Enter the name of the PI"
 },
 "header": "This template should be filled out by the Principal Investigator",
 "footer": "This template must be used without any changes to the questions or
to the order of questions. To suggest any changes, please contact
john.doe@acme.com"
}

Template Element Rendering Information
As with a template, a template element can have nested fields and elements so we also need
an order field to indicate their order. Template elements are not paged so a pages field is not
needed. Like templates, elements can optionally contain propertyLabels and
propertyDescriptions fields, as well as header and footer fields.

Here is an example of a _ui field for a template element:

"_ui": {
 "order": ["name", "description"],
 "propertyLabels": {
 "address": "Address"
 },
 "propertyDescriptions": {
 "address": "An address"
 }
}

Template Field Rendering Information
Every field has an inputType field that indicates the type of user interface element that can be
used to display the field.

The current possible core field types are textfield, textarea, radio, checkbox, temporal,
email, list, numeric, phone-number, section-break, richtext, image, link, and youtube.

Finally, a field called valueRecommendationEnabled indicates whether the field's value should
be used for CEDAR's intelligent authoring facilities.

Here is an example _ui field for a text field:

"_ui": {
 "inputType": "textfield",
 "valueRecommendationEnabled": true
}

A template field can also be indicated as hidden, in which case the field will not be rendered in
an acquisition tool. An optional boolean-valued field called hidden can be used inside the _ui
object to indicate this state. In general, hidden fields must have a default value specified via an
appropriate value constraint on the field.

If the field input type is indicated as temporal then a specific temporal type must be specified in
the associated _valueConstraints section. A field called temporalType must be present in
this section if the input type is temporal. Current possible values are xsd:time, xsd:date, and
xsd:dateTime.

For these three temporal types, a matching temporalGranularity field must also be present in
the field's _ui section. This field indicates the finest granularity at which temporal information
should be acquired and displayed. Possible values are year, month, day, hour, minute, second,
and decimalSecond. Irrespective of the values of these granularity fields, the actual stored time,
date, or datetime value in the field instance must follow the XML Schema Datatype
specification, meaning that padding of values may be required. For example, if a finest
granularity of month is specified for a date field and a user enters 1999-12 that value must be
padded to, say 1999-12-01 to ensure that the stored value satisfies the specification of
xsd:date values.

Two additional fields can be added to a temporal field's _ui section to control display and
acquisition: timeZoneEnabled and inputTimeFormat. The timeZoneEnabled field is boolean
and indicates if time zone information should be acquired and displayed for the field. The
inputTimeFormat field is currently used to indicate whether a 24-hour or 12-hour clock is to be
used to display and acquire time. Possible values are 12h and 24h, respectively.

Here is an example _ui and _valueConstraints specification for a datetime field that uses a
24-hour clock, has a finest granularity of days, and displays and acquires time zone information:

"_ui": {

 "inputType": "temporal",

 "temporalGranularity": "day",

 "inputTimeFormat: "24h",

 "timeZoneEnabled": true

},

"_valueConstraints": {

 "temporalType": "xsd:dateTime"

}

Attribute-Value Field Rendering Information
CEDAR also supports a type of field attribute-value fields, which allow users to dynamically add
fields to a template instance in a controlled way.

For example, if we'd like users to be able to add new fields in a particular place in the form we
can position an attribute-value field in the desired location in the enclosing template or element.

https://www.w3.org/TR/xmlschema-2/
https://www.w3.org/TR/xmlschema-2/

Since we cannot directly specify a JSON Schema specification for an instance field whose
name is not known we need a level of indirection for these types of fields. Basically, the field
specification for an attribute-value field specifies an array that will contain the user-defined
attribute names in an instance. This array will contain an (implicitly) ordered list of attribute field
names. We then use a JSON Schema additionalProperties specification to indicate how the
values of such fields must appear in the instance.

For example, a field specification for an attribute-value field called "My User-Defined Fields"
would look as follows:

"My User-Defined Fields": {

 "type": "array",

 "minItems": 0,

 "items": {

 "@type": "https://schema.metadatacenter.org/core/TemplateField",

 "@id": "https://repo.metadatacenter.org/template-fields/7ee0",

 ...

 "_ui": { "inputType": "attribute-value" },

 "_valueConstraints": { "requiredValue": false },

 "type": "string"

 ...

 }

}

Here we have a field type of attribute-value. The schema specifies that the instance contains a field
called "My User-Defined Field" which is an array of strings. These string store the names and
(implicitly) the order of the attribute fields added to instances. We do NOT add the attribute-value
field name to the enclosing template or element required field because a field of this name will not
actually appear in the instances - the user will be specifying the names of attribute fields in the
instance itself.

For example, a template instance with two attribute fields defined using the "My User-Defined Fields"
attribute-value field with the names "Name" and "Alias" would have an entry as follows:

"My User-Defined Fields": ["Name", "Alias"]

We can use an additionalProperties specification on enclosing templates and elements as follows
to allow new attribute fields to appear in the instances:

"additionalProperties": {

 "type": "object",

 "properties": {

 "@value": { "type": ["string", "null"] },

 "@type": { "type": "string", "format": "uri" }

 },

 "required": ["@value"],

 "additionalProperties": false

}

Any attribute fields in an instance must follow this specification. They will look like a normal fields.

Note that here the source field specification in the schema is not actually used to specify the format
of the field instance - instead, the additionalProperties specification is. The source field
specification is however could be used for value constraints, for example.

A template instance with values for the above attribute fields "Name" and "Alias" could look as
follows:

"My User-Defined Fields": ["Name", "Alias"],

"Name": { "@value": "Fredrick" },

"Alias": { "@value": "Fred" }

Templates and elements can contain an unlimited number of attribute-value fields. Similarly,

instances can contain an unlimited number of fields derived from a particular attribute-value field

specification. In an instance, the name of an attribute-value field must be present in the

associated attribute-value field array. This name can be used to resolve the source

attribute-value field specification in the template and thus allow disambiguation.

At present only string values are allowed in attribute-value fields. This value can optionally be
typed using a JSON-LD @type specification.

Note that when a user adds a new attribute-value field an @context entry must be made in the
instance for that field (and removed when an attribute-value field is removed). This entry will allow
users to label these fields with RDF properties, thus allowing the fields and their values to appear as
first class entities when generating RDF.

Appendix A: JSON Schema
JSON Schema is a technology for describing and validating the structure of JSON data [JSON
SCHEMA]. Its directives—themselves represented as standard JSON elements—can be used
to provide a structural description of any JSON document. JSON documents that are specified
with JSON Schema can be structurally validated against their associated schemas via
off-the-shelf tools.

JSON Schema provides a set of directives to describes the structure of a JSON document. A
JSON Schema specification contains a set of JSON Schema directives and is represented as a
standard JSON document. A JSON Schema description is specified as a JSON object. The
presence of a top-level field named $schema in a JSON object signals that it is a JSON Schema
specification. The value of this field identifies the particular version of the JSON Schema
specification that is being used.

A type field indicates the required type of the conforming JSON object. The possible value for
this field are the core JSON types: object, array, string, boolean, numeric, and null. JSON
Schema description objects can also optionally contain title and a description fields, which
are descriptive only.

Here is a minimal JSON Schema description:

{
 "$schema": "http://json-schema.org/draft-04/schema#",
 "type": "object",
 "title": "Minimal JSON Schema",
 "description": "Minimal JSON Schema specification"
}

The core JSON Schema directive is represented using a field called properties. This directive
describes the fields that a conformant JSON object might or must have, together with
associated sub-schema that constrain the values of these fields. The various fields in a schema
and restrictions on them are listed in the properties field. The field names and their type
information can be specified at this level.

As associated field called required is used to signal if those fields are required in a conforming
JSON document. An additionalProperties Boolean field can also be included to indicate
whether properties beyond those listed in the properties field can be included in a conforming
instance data.

Here is a JSON Schema description for an empty JSON document:

{
 "$schema": "http://json-schema.org/draft-04/schema#",
 "type": "object",
 "title": "Empty JSON Schema",
 "description": "An empty JSON Schema specification",
 "properties": {},
 "required": [],
 "additionalProperties": false
}

This schema description specifies a JSON object that must not contain any fields. The only
conforming JSON instance will be an empty object, i.e., it will be: {}.

The field values are in turn specified using JSON Schema.

For example, a schema description for a simple JSON object representing a basic study design,
which has two required fields called briefTitle and principalInvestigatorName, can be
specified in JSON Schema as follows:

{
 "$schema": "http://json-schema.org/draft-04/schema#",
 "type": "object",
 "title": "Basic study design",
 "description": "Basic study design JSON Schema specification",
 "properties": {
 "briefTitle": { "type": "string" },
 "principalInvestigatorName": { "type": "string" }
 },
 "required": ["briefTitle", "principalInvestigatorName"],
 "additionalProperties" : false
}

The above definition indicates that in any JSON document that follows this schema, briefTitle
and principalInvestigator must be present and contain JSON strings, even if their values
are empty. The field additionalProperties is false, which means that properties other than
those listed in properties are not allowed. A conforming instance could look as follows:

{
 "briefTitle": "A Big Study",

 "principalInvestigatorName": "Dr. P.I."
}

Restricting Property Values

In addition to restricting the type of a property, JSON Schema can also be used to restrict the
values that a property can take. A JSON Schema field called enum can be used in a property
definition directive to specify this value restriction. This field must have a value that is an array
with at least one element, where each element is unique. The values in this array effectively
specify the allowed values for the field.

For example, let’s suppose that we would like a JSON object with a single required field called
language and would like to restrict the possible values of that field to one of the strings “English”
and “Spanish”. This can be achieved using the following schema:

{
 "$schema": "http://json-schema.org/draft-04/schema#",

 "type": "object",
 "title": "Language type",
 "description": "Language type JSON Schema specification",
 "properties": {
 "language": {
 "type": "string",
 "enum": ["English", "Spanish"]
 }
 },
 "required": ["language"],
 "additionalProperties": false
}

A conforming JSON document fragment would be:

{
 "language": "English",
}

An array with a single element can be used to restrict a field to a single value. For example, if
we would like to specify that the above language field should only contain the language
“English” we can simply specify that language as the single value in the array (i.e., "enum" :
["English"]).

Nesting JSON Schema specifications
As mentioned, field definitions inside a JSON Schema specification can themselves contain
JSON Schema specifications, which effectively allows JSON Schema specification to be nested
to arbitrary depths. For example, if we wish to indicate that the principal investigator named in
the previous study design Schema is actually a compound object containing forename and
surname fields we can express this as follows:

{

 "$schema": "http://json-schema.org/draft-04/schema#",
 "type": "object",
 "title": "Basic study design",
 "description": "Basic study design JSON Schema specification",
 "properties": {
 "briefTitle": { "type": "string" },
 "principalInvestigatorName":
 {
 "type": "object",
 "properties": {
 "forename": { "type": "string" },
 "surname": { "type": "string" }
 },
 "required": ["forename", "surname"],
 "additionalProperties" : false
 }
 },
 "required": ["briefTitle", "principalInvestigatorName"],
 "additionalProperties" : false
}

As can be seen above, it is not necessary to repeat the $schema field inside nested elements.
An instance conforming to the above specification would look as follows:

{
 "briefTitle": "A Big Study",

 "principalInvestigatorName": {
 "forename": "Patrick",
 "surname": "O’Bannion"
 }
}

Reusing JSON Schema specifications with $ref
To support the reuse of schema specifications, JSON Schema also includes a $ref directive.
This directive can be used to refer to external JSON Schema descriptions. For example, instead
of inlining the principal investigator name specification inside the study design specification, we
can separately define the the principal investigator name and use the $ref directive to refer to it
inside the study design specification:

{
 "principalInvestigatorName": {
 "$schema": "http://json-schema.org/draft-04/schema#",
 "type": "object",
 "title": "Principal Investigator Name",

 "description": "Principal investigator name JSON Schema specification",
 "properties": {
 "forename": { "type": "string" },
 "surname": { "type": "string" }
 },
 "required": ["forename", "surname"],
 "additionalProperties" : false
 },
 "basicStudyDesign": {
 "$schema": "http://json-schema.org/draft-04/schema#",
 "type": "object",
 "title": "Basic study design",
 "description": "Basic study design JSON Schema specification",
 "properties": {
 "briefTitle": { "type": "string" },
 "principalInvestigatorName": { "$ref": "#/principalInvestigatorName" }
 },
 "required": ["briefTitle", "principalInvestigatorName"],
 "additionalProperties" : false
 }
}

The reference uses JSON Pointer [JSON-POINTER] to specify the location of the referenced
JSON Schema object. Here, the reference is to a field inside a JSON object in the same file.
The reference can also be prefixed with a relative or absolute URL to reference a
web-accessible resource.

Representing Arrays in JSON Schema
JSON Schema has inbuilt support for indicating that the value of a JSON field can be an array
(see Section 4.1.4 of [JSON SCHEMA]).

For example, if we have a JSON field called f1 that can contain an array of 2 to 4 objects we
can express this in JSON Schema as:

"f1": {
 "type": "array", "minItems" : 2, "maxItems" : 4,
 "items" : {
 "type" : "object"
 }
}

A JSON document fragment for the property f1 conforming to this schema could then look
something like:

"f1": [{ <some JSON object> }, { <some JSON object> }]

Here, the array elements could contain any JSON object.

If we want to restrict the schema of the objects in the array we can simply embed standard
JSON Schema description inside the items field value.

For example, if we have the following JSON Schema description of a person object:

{
 "$schema": "http://json-schema.org/schema#"
 "type": "object",
 "properties": {
 "name": { "type": "string" },
 "age { "type": "number" }
 },
 "required": ["name", "age"],
}

we can extend the earlier definition of the f1 field to indicate that the array must consist of
person objects as follows:

"f1": {
 "$schema": "http://json-schema.org/schema#"
 "type": array, "minItems" : 2, "maxItems" : 4,
 "items" : {
 "type": "object",
 "properties": {
 "name": { "type": "string" },
 "age { "type": "number" }
 },
 "required": ["name", "age"],
 }
}

An example of a JSON document fragment for property "f1" conforming to this JSON Schema
could then be:

"f1": [{ "name" : "Fred", "age": 55 },
 { "name" : "Bob", "age": 26 }
]

Appendix B: JSON-LD
JSON-LD provides a lightweight syntax to add semantic annotations to JSON documents
[JSON-LD]. The key goals of JSON-LD are to support the use of Linked Data in Web-based
programming environments, to build interoperable Web services, and to store Linked Data in
JSON-based storage engines. JSON-LD effectively allows JSON documents and their contents
to be made available as Linked Data, offering the potential for machine-interpretable RDF
semantics

Core JSON-LD functionality is provided with just three fields: @type, @id, and @context. We will
first describe these fields and outline how they can be used to add semantic markup to JSON
documents.

JSON-LD @type Field
The @type field is used by JSON-LD to provide a principled way of adding additional type
information to JSON objects. The value of this field is one or more URIs indicating the type or
types of the associated object or field. (This constraint must be specified with JSON Schema on
each @type declaration.)

For example, here is a simple template element for a study design where we indicate that each
metadata instance must have a @type field, and that the value of the field must be a URI:

{
 "$schema": "http://json-schema.org/draft-04/schema#",
 "type": "object",
 "title": "Basic Study Design",
 "description": "Basic example of a template element to describe a study",
 "properties": {
 "@type": {
 "type": "string", "format": "uri"
 },
 "briefTitle": { ... },
 "principalInvestigator": { ... }
 },
 "required": ["@type", "briefTitle", "principalInvestigator"],
 "additionalProperties": false
}

The following is an example of a conforming instance:

{
 "@type": "https://example.com/SomeType",

 "briefTitle": { ... },
 "principalInvestigator": { ... },
}

It contains a @type field with a URI identifying a type.

If we wish to constrain the value of the @type field we can use JSON Schema’s enum clause to
constrain the field value.

For example, to force the @type field in the instance data to contain the URI
http://ncicb.nci.nih.gov/xml/owl/EVS/Thesaurus.owl#C19067 we can extend the above
specification as follows:

{
 "$schema": "http://json-schema.org/draft-04/schema#",
 "type": "object",
 "title": "Basic Study Design",
 "description": "Basic example of a schema to describe a study",
 "properties": {
 "@type": {
 "type": "string", "format": "uri",
 "enum": ["http://ncicb.nci.nih.gov/xml/owl/EVS/Thesaurus.owl#C19067"]
 },
 "briefTitle": { ... },
 "principalInvestigator": { ... }
 },
 "required": ["@type", "briefTitle", "principalInvestigator"],
 "additionalProperties": false
}

A conforming instance would then need to include a @type field with the specified URI as its
value:

{
 "@type": "http://ncicb.nci.nih.gov/xml/owl/EVS/Thesaurus.owl#C19067",
 "briefTitle": { ... },
 "principalInvestigator": { ... },
}

This is basically a standard JSON Schema approach to forcing the values in JSON instance
data to come from controlled term lists. The data will not validate if each field does not contain
an exact value from the enumerated list.

If we wish to indicate that @type field may contain one or more URIs, we can use the JSON
Schema oneOf directive to add that option. Here is the resulting specification:

"@type": {
 "oneOf": [
 {
 "type": "string", "format": "uri"
 },
 {
 "type": "array",
 "items": {
 "type": "string", "format": "uri"
 },
 "minItems": 1,
 "uniqueItems": true
 }
]
}

The above specification states that the @type field must contain either a single
quotation-enclosed URI value, or one or more quotation-enclosed URIs in a JSON array.

Examples of conforming field instances include:

"@type": "https://schema.org/Person"
"@type": ["https://schema.org/Person"]
"@type": ["https://schema.org/Person", "https://schema.org/Place"]

JSON-LD @id Field

JSON-LD also provides a universal identifier mechanism for JSON objects. It includes an
identifier field called @id which contains an URI-encoded identifier. This field allows JSON
objects to be identified via a web-accessible URI and allows the values of JSON fields to refer to
a JSON object on a different site on the Web.

For example, here is a JSON Schema definition for a study design, which has been enhanced
with JSON-LD @id markup:

{
 "$schema": "http://json-schema.org/draft-04/schema#",
 "type": "object",
 "@id": "https://example.com/StudyDesign",
 "title": "Basic Study Design",
 "description": "Basic example of a schema to describe a study",
 "properties": {
 "briefTitle": { ... },

 "principalInvestigator": { ... }
 }
 }
 "required": ["briefTitle", "principalInvestigator"],
 "additionalProperties": false
}

Here the @id field is used to define the identifier used for this metadata template (i.e.,
https://example.com/StudyDesign). This field will make it possible to uniquely identify the
schema specification object and to externally reference it.

We can also indicate that an instance conforming to this JSON Schema definition must include
an @id field.

For example, here is the above study design template extended to force instances to contain an
@id field:

{
 "$schema": "http://json-schema.org/draft-04/schema#",
 "type": "object",
 "@id": "https://examle.com/StudyDesign",
 "title": "Basic Study Design",
 "description": "Basic example of a schema to describe a study",
 "properties": {
 "@id": { "type": "string", "format": "uri" },
 "briefTitle": { ... },
 "principalInvestigator": { ... }
 }
 },
 "required": ["@id", "briefTitle", "principalInvestigator"],
 "additionalProperties": false
}

The second @id field is located inside the properties object and it has also been set as a
required property, so it indicates that any JSON document that follows this schema must have
a property @id to identify it, whose value will be a URI. It restricts the identifier value in the field
to be a URI, though users can use their own identifier mechanism to provide the actual identifier.

JSON-LD @context Field
Another key field defined by JSON-LD is named @context, and it is used to establish the
namespaces for the elements in the document by mapping JSON field names to URIs. Primarily
it is used to map field names to URIs identifying properties.

For example, a context definition mapping a _value field to the Schema.org
https://schema.org/value property be:

"@context": {
 "_value": "https://schema.org/value"
}

The @context field is slightly more complex to specify than @type or @id fields, but adopts their
same JSON-Schema-based specification approach.

For example, to force a JSON instance to contain the following @context field:

"@context": {
 "title": "https://schema.metadatacenter.org/title",
 "year": "https://schema.metadatacenter.org/year",
 "_value":"https://schema.org/value"
}

we can write the following in the JSON Schema-encoded specification:

"properties": {
 "@context": {
 "properties": {
 "title": { "enum": ["https://schema.metadatacenter.org/title"] },
 "year": { "enum": ["https://schema.metadatacenter.org/year"] },
 "_value": { "enum": ["https://schema.org/value"] }
 },
 "required": ["title", "year", "_value"],
 "additionalProperties": false
 },
 "required": ["@context"]
}

What we are basically trying to do here is to force the data to contain specific URIs that encode
type information for the properties in the JSON object.

Appendix C: Model Change Log

1.6.0
Released June 27th, 2020.

The following model updates were made in the 1.6.0 version of the model:

(1) The datetime field was superseded by a new temporal field, which supports three types of
temporal data: dates, times, and datetimes. The new temporal field is described in the Template
Field Rendering Information section.

(2) Template instances can now optionally contain a field called schema:identifier. This field
can be used to store user-friendly identifiers for instances or can be used to store external
identifiers for instances imported from external systems. This field is described in the
Representing Artifact Provenance section.

1.5.0
Released December 4th, 2018.

The following model updates were made in the 1.5.0 version of the model:

(1) Schema artifacts (i.e., templates, elements, and fields) can now optionally contain a field
called schema:identifier. This field can be used to store user-friendly identifiers for artifacts or
can be used to store external identifiers for artifacts imported from external systems. This field is
described in the Representing Artifact Provenance section.

(2) Template field specifications can now optionally contain skos:prefLabel and skos:alt
Label fields. The skos:prefLabel field stores question text for a field; the skos:altLabel field
can be used to store one or more alternate question text for a field. These fields are described
in the Representing Template Fields section.

(3) Template field instances containing controlled term value can now optionally include a
skos:notation field. This field can be used to store values targeted for computer interpretation
(as opposed to the rdfs:label field, which is used to store user-friendly values). This field is
described in the Representing Template Fields section.

(4) Several additions were made to the _valueConstraints field. Numeric fields can now
contain a field called numberType in the _valueConstraints object indicating the field datatype

and a unitOfMeasure field indicating the associated units. Numeric fields can also contain fields
called minValue and maxValue to indicate minimum and maximum values. Floating point fields
can also contain a decimalPlace field specifying the number of decimal places displayed. New
properties minLength and maxLength can be used to indicate minimum and maximum lengths
for strings. Finally, the existing defaultValue field can now hold defaults for URI-based field
values.

(5) A field called propertyDescriptions was added to the _ui field in templates and
elements. It functions much like the existing propertyLabels field and is used to map JSON
field names to customized field names for enclosing templates and elements.This field is
described in the Representing User Interface Rendering Specifications section.

1.4.0
Released May 1st, 2018. Source document here.

The following model updates were made in the 1.4.0 version of the model:

(1) Schema artifacts (i.e., templates, elements, and fields) can now be versioned. The additional
version fields are pav:version, pav:previousVersion, and bibo:status. These fields are
described in the Representing Artifact Version section.

(2) Artifacts can now contain an optional pav:derivedFrom field to indicate that the artifact was
copied from another resource. This field is described in the Describing Artifact Provenance
section.

(2) The model now allows users to add additional fields to instances in a controlled way via the
addition of a new attribute-value field type. This field is described in the Attribute-Value Field
Rendering Information section.

1.3.0
Released November 1st, 2017. Source document here.

The following model updates were made in the 1.3.0 version of the model:

(1) Template field instances with IRI values previously used a custom _valueLabel field to store
labels for their associated IRI. This field has now been replaced with the standard rdfs:label
field, with the RDFS prefix mapped appropriately in the context for a template instance.

For example, an IRI field value like the following:

{ "@id": "https://example.com/A", "_valueLabel": "A"}

https://docs.google.com/document/d/1lzi-6VtBPxhe6pDC3fVVc4JUKwpI509vUhYEuv3D8CU/edit#heading=h.1kaxshr6pq17
https://docs.google.com/document/d/1mfrnIOvmzeA6nWIQbE6zuMmac2D52hnS4Pu6IrQs-Hg
https://docs.google.com/document/d/1mfrnIOvmzeA6nWIQbE6zuMmac2D52hnS4Pu6IrQs-Hg/edit#heading=h.nstn3d7jszpg
https://docs.google.com/document/d/1mfrnIOvmzeA6nWIQbE6zuMmac2D52hnS4Pu6IrQs-Hg/edit#heading=h.tkfe0s6vyd8s
https://docs.google.com/document/d/1mfrnIOvmzeA6nWIQbE6zuMmac2D52hnS4Pu6IrQs-Hg/edit#heading=h.tkfe0s6vyd8s
https://docs.google.com/document/d/1ugcE0eoNhZuEuaeQES4hNRri4VokcXBt0cfH91Sc5wc/edit

would now look like:

{ "@id": "https://example.com/A", "rdfs:label": "A"}

This approach will now generate a meaningful RDF graph from the JSON-LD.

(2) Previously, template instance names and descriptions were stored inside the _ui field. We
now store these at the top level of an instance using the standard schema:name and
schema:description fields.

For example, an instance like the following:

{
 "_ui": {
 "title": "Study", "description": "A clinical study"
 },
 ...
}

would now look like:

{
 "schema:name": "Study",
 "schema:description": "A clinical study"
 "_ui": { ... },
 ...
}

Again, this approach will result in more meaningful RDF being generated from the instance
JSON-LD.

1.1.0
Released May 4th, 2017. Source document here.

Version 1.1.0 should be considered at the first stable release of the model. Numerous minor
updates and fixes were made from earlier model releases.

https://docs.google.com/document/d/14MdrTjs9PutCWyKI9MGN6VHNAImKmUMCPDhNYChh87w

Glossary

Metadata – descriptors that describe the properties of data
Metadata Template – a composite set of metadata template elements and value elements
Metadata Template Element – reusable representation of one or more metadata descriptors
relating to a particular aspect of some data; metadata template elements may contain more or
more value elements and may be combined recursively to create more complex elements
Metadata Template Field - an atomic piece of metadata
Metadata Template Instance – instantiated metadata template
URI – Universal Resource Identifier

References
[BIOCADDIE] Ohno-machado, Lucila; Alter, George; Fore, Ian; Martone, Maryann; Sansone,
Susanna-Assunta; Xu, Hua (2015): bioCADDIE white paper - Data Discovery Index.
https://dx.doi.org/10.6084/m9.figshare.1362572.v1
[CEDAR SCHEMA] CEDAR Template Model Schema
https://github.com/metadatacenter/cedar-templates/blob/master/validation/template_validator.jso
n
[EKAW2016] O’Connor MJ, Martinez-Romero M, Egyedi AL, Willrett D, Graybeal J, Musen MA.
An open repository model for acquiring knowledge about scientific experiments. In: LNCS. Vol
10024; 2016:762-777.
[JSON] The JSON Data Interchange Format, 1st Edition. October 2013. ECMA International,
Standard ECMA-404.
http://www.ecma-international.org/publications/files/ECMA-ST/ECMA-404.pdf
[JSON-LD] JSON-LD 1.0, A JSON-based Serialization for Linked Data, W3C Recommendation
16 January 2013. https://www.w3.org/TR/json-ld/. See also web site: http://json-ld.org
[JSON-LD-PLAYGROUND] http://json-ld.org/playground
[JSON-POINTER] http://spacetelescope.github.io/understanding-json-schema/structuring.html
[JSON-SCHEMA] http://json-schema.org
[JSON-SCHEMA-STSI]
http://spacetelescope.github.io/understanding-json-schema/UnderstandingJSONSchema.pdf
[JSON-VALIDATE] JSON Schema Validator: http://www.jsonschemavalidator.net
[LINKED-DATA] http://en.wikipedia.org/wiki/Linked_data
[OWL-CONSTRAINTS] Motik B, Horrocks I, and Sattler U. Adding Integrity Constraints to OWL.
OWLED, 2007; Vol. 258
[SHACL] Shapes Constraint Language (SHACL) https://www.w3.org/TR/shacl/
[SNOMEDCT-INSTITUTION] SNOMEDCT Institution class:
 http://purl.bioontology.org/ontology/SNOMEDCT/385437003
[PAV] Provenance and Versioning Ontology https://pav-ontology.github.io/pav/pav.rdf

https://dx.doi.org/10.6084/m9.figshare.1362572.v1
https://github.com/metadatacenter/cedar-templates/blob/master/validation/template_validator.json
https://github.com/metadatacenter/cedar-templates/blob/master/validation/template_validator.json
http://www.ecma-international.org/publications/files/ECMA-ST/ECMA-404.pdf
https://www.w3.org/TR/json-ld/
http://json-ld.org
http://json-ld.org/playground
http://spacetelescope.github.io/understanding-json-schema/structuring.html
http://json-schema.org
http://spacetelescope.github.io/understanding-json-schema/UnderstandingJSONSchema.pdf
http://www.jsonschemavalidator.net
http://en.wikipedia.org/wiki/Linked_data
https://www.w3.org/TR/shacl/
http://purl.bioontology.org/ontology/SNOMEDCT/385437003
https://pav-ontology.github.io/pav/pav.rdf

	CEDAR Template Model V1.6.0
	Martin J O'Connor, Marcos Martínez-Romero, ​and the CEDAR Team
	
	Table of Contents
	
	Introduction
	Template Model
	Template Model Concrete Representation
	
	Representing Artifact Provenance
	Representing Artifact Structure Using JSON Schema
	Representing Template Fields
	Representing Template Fields with Multiple Values
	Representing Template Elements
	Representing Templates
	Representing Multiple Instances of Template Elements and Template Fields

	Representing Artifact Semantics using JSON-LD
	Representing Additional Artifact Metadata using JSON-LD
	Representing Instances as RDF

	Expressing Field Value Constraints
	The _valueConstraints field
	General Value Constraint Fields
	Numeric Value Constraint Fields
	Temporal Value Constraint Fields
	The ontologies Value Constraint Field
	The classes Value Constraint Field
	The branches Value Constraint Field
	The valueSets Value Constraint Field
	The literals Value Constraint Field
	The defaultValue Value Constraint Field

	Representing User Interface Rendering Specifications
	Template Rendering Information
	Template Element Rendering Information
	Template Field Rendering Information
	Attribute-Value Field Rendering Information

	Appendix A: JSON Schema
	Restricting Property Values
	Nesting JSON Schema specifications
	Reusing JSON Schema specifications with $ref
	Representing Arrays in JSON Schema

	Appendix B: JSON-LD
	JSON-LD @type Field
	JSON-LD @id Field
	JSON-LD @context Field

	
	
	Appendix C: Model Change Log
	1.6.0
	1.5.0
	1.4.0
	1.3.0
	1.1.0

	
	
	Glossary
	
	
	References

